Oct. 21, 2013 — Researchers at Columbia University Medical Center (CUMC) have devised a hair restoration method that can generate new human hair growth, rather than simply redistribute hair from one part of the scalp to another. The approach could significantly expand the use of hair transplantation to women with hair loss, who tend to have insufficient donor hair, as well as to men in early stages of baldness. The study was published today in the online edition of the Proceedings of the National Academy of Sciences (PNAS).
"About 90 percent of women with hair loss are not strong candidates for hair transplantation surgery because of insufficient donor hair," said co-study leader Angela M. Christiano, PhD, the Richard and Mildred Rhodebeck Professor of Dermatology and professor of genetics & development. "This method offers the possibility of inducing large numbers of hair follicles or rejuvenating existing hair follicles, starting with cells grown from just a few hundred donor hairs. It could make hair transplantation available to individuals with a limited number of follicles, including those with female-pattern hair loss, scarring alopecia, and hair loss due to burns."
The source of new hair: For the first time, researchers have been able to take human dermal papilla cells (those inside the base of human hair follicles) and use them to create new hairs. Image: Claire Higgins/Christiano Lab at Columbia University Medical Center.
According to Dr. Christiano, such patients gain little benefit from existing hair-loss medications, which tend to slow the rate of hair loss but usually do not stimulate robust new hair growth.
"Dermal papilla cells give rise to hair follicles, and the notion of cloning hair follicles using inductive dermal papilla cells has been around for 40 years or so," said co-study leader Colin Jahoda, PhD, professor of stem cell sciences at Durham University, England, and co-director of North East England Stem Cell Institute, who is one of the early founders of the field. "However, once the dermal papilla cells are put into conventional, two-dimensional tissue culture, they revert to basic skin cells and lose their ability to produce hair follicles. So we were faced with a Catch-22: how to expand a sufficiently large number of cells for hair regeneration while retaining their inductive properties."
Read the full story at: http://www.sciencedaily.com/releases/2013/10/131021104242.htm
No comments:
Post a Comment
I do not accept Soliciting or Advertising on this blog.
Note: Only a member of this blog may post a comment.